大嘉购无卡支付APP咨询: 微信:18833195
大嘉购(www.jinkongqianbaow.com)是广东盛迪嘉电子商户股份有限公司旗下独立电商购物及移动支付品牌,资金由持人行颁发支付牌照支付机构“盛迪嘉支付”提供结算服务!

面对Twitter,AI表示“真心带不动”

大嘉购官网整理编辑:

本文经授权转载自公众号: 脑极体(ID:unity007),作者:藏狐

在社交平台Twitter的身上,“舆论风向”的变幻莫测常常令我们目瞪口呆。

它曾经是科技行业的宠儿,若干起政经社会娱乐大事件的发源地,分析师和华尔街眼中“社交的未来”;高调上市后股价持续跳水,又被贴上“推特已死”、“下一个雅虎”的标签,搞得想“卖身”都卖不出去;2017年Q4首次盈利后,Twitter的营收开始恢复增长并持续到现在,于是市面上又出现了无数盘点Twitter二次崛起的成功学:聚焦“新闻”定位、视频化、管理垃圾内容、组织调整……

总之,业绩下滑时这些都是隐患,业绩上扬时这些都是优点,搞得路人无比懵逼,这大概就是传说中的“事物都有两面性”吧。

当然,在Twitter的“绝地求生”中,没有一个人会否认引入AI技术的必要性。而推特也确实在AI上做了大量的工作。尽管如此,我们也深知从结果逆推过程,在现象发生后的“马后炮”并无意义,所以,作为一个坚持为AI代言的媒体,我们也不愿意简单地将AI视作推特“起死回生”的救命稻草。

恰恰相反,推特在AI上栽种与收获的,在我们看来还远远不够。那么,回过头来看Twitter的AI进化史,到底带来哪些教训与启示呢?

绝地求生的Twitter,面前都有哪些坑?

Facebook在2012年IPO的时候,许多评论家并不看好,认为Twitter才是这一代互联网公司的楷模。但是风水轮流转,2016年Facebook风生水起,而Twitter则到了高层出走、用户流失、不得不出售公司的倒闭边缘。

几次收购失利之后,Twitter开启了艰难的自救之旅。过程自然是无比痛苦的,坑和雷区也是琳琅满目的。人才流失、增长搁浅、社交分流等外部因素略过不提,单从产品层面,Twitter的问题就有不少。

首当其冲的,就是一直为人所诟病的内容环境。

在Twitter上,“键盘侠”如同跗骨之蛆,四处散播着践踏人权的恶意评论和人身攻击。还充斥着虚假新闻、机器人等散播的垃圾内容。对此,CEO杰克·多西认为“Twitter是一个通讯工具,不擅长判断个人之间的内容纠纷。”,所以Twitter接到举报后的做法常常是封号了事。这种中立态度显然加速了Twitter用户,尤其是受语言暴力最为严重的名人和KOL的流失,直接导致Twitter内容生态的萎缩。

面对Twitter,AI表示“真心带不动”

还有一点是,坚持走媒体平台定位之后,Twitter在产品体验和内容价值上却没有明显的升级。以强调“在现场”的直播产品为例,无疑是展示Twitter“新闻力”的最佳捷径,但Twitter依然采用了PC时代的产品思维,仅仅是将现场从传统电视台搬到了手机上,作为对文字和图片内容的简单补充,至于事件过程、其他人的连锁反应等,都集体缺位了。

用科技分析师Ben Thompson的话来说,刚好证明了“这家公司(Twitter)的成功靠的更多是运气,而不是洞察力。”

当然,Twitter的困境还有很多,这里用尽笔墨也只是炒冷饭。更关键的是,它到底在技术上做了哪些动作,为自己在处处有“惊喜”的雷区中艰难地扫出了一条生路。

笨鸟后飞的推特AI

Twitter显然也感觉到了自己必须做出一些改变。

2017年,美国亿万富翁Mark Cuban开始买入Twitter的股票,他在接受CNBC采访时表示:“我认为他们终于开始了人工智能方面的动作”。当时,Twitter开始使用人工智能来筛选和过滤推荐给读者的推文。

此后,Twitter开始了一系列的AI改造计划:

1.用机器提高内容整治效率

Twitter终于意识到,唯有健康有序的平台环境,才能留住核心用户,并为广告商提供价值,最终形成业绩增长的良性循环。因此,机器学习算法的引入就变得至关重要。

Twitter收购了伦敦创业公司Fabula AI,这家公司的专长是图形深度学习,使用机器学习来分析大型数据集并找出关系和交互。这能够帮助Twitter的机器学习团队通过关系映射来更好地发现社交网络上的假新闻,垃圾邮件和其他问题,进而改善平台对话的健康状况。

2018年,Twitter发布了一个名为Exploring Online Hate的面板工具,能够通过1000个Twitter账户的样本来寻找仇恨活动的规律、趋势,然后利用算法生成更大的数据集,从而实时掌握网络上仇恨言论,控制相关的热门话题和言论来源。

目前,Twitter有38%的有害内容是由算法自动筛选出的。

2.在信息流中引入了算法推荐

信息流是Twitter首创的信息分发方式,2012年,Twitter就收购了新闻聚合推送网站Summify,用于理解和挖掘Twitter的信息流数据,追踪新闻的传播效益。但Twitter在信息流中接入算法推荐的时间,却要晚于Facebook。

2016年,Twitter推出了一项新功能:通过算法自行筛选它认为对用户重要的内容。用户的信息流不再按照时间轴显示,而是通过推荐机制显示Twitter认为对用户重要的信息,以及向他们推荐未关注账号的内容。

2017年,又上线了“探索”选项卡,通过算法将热门话题、重大新闻以及搜索功能集中起来,放在一个功能分区,以便用户快速追踪到真正感兴趣的故事和品牌。

3.靠AI提升交互体验

2016年,Twitter收购了伦敦的机器学习创业公司Magic Pony Technology,对方的算法能理解“图像的特征”,这使得Twitter能重新在视频流、直播等内容上再次出发。

比如推出互动视频功能(conversational video),根据上一步的操作提前录制好多份剧情,按照用户行为(选择Yes or No)来推进到下一步。为直播增加了一个名为Moments的页面、将推文整理成前后连贯的“故事”。

互动性的增强和新的内容形态也重新吸引了广告主的青睐,2018年第二三季度,来自视频广告的收入为Twitter贡献了超过一半的广告收入。

再比如机器翻译之类的措施,来帮助各个区域的跨文化交流等等,Twitter在广告转化(ad cvr)和反垃圾信息上(anti spam)做了很多技术优化,用户的参与度也有所增强。

目前看来,Twitter发力AI有几个明显的特点:

1.起步晚,令人眼前一亮的案例和技术十分有限;

2.技术布局围绕营收展开,尽可能让流量最大化,助攻广告效果;

3.几乎所有功能创新都是在补短板,缩小与其他社交平台的体验差距。

然而,Twitter真的把握住了AI的命脉了吗?似乎也未必。

AI到底能不能挽救推特?

某种意义上来说,Twitter的AI战略更像是在“救火”,哪里有险情点哪里。

对于极度渴望重回聚光灯下的Twitter来说,这么做似乎也无可厚非。但却造成了不少困境:

一方面,Twitter无法凭借AI生长出属于自己独一无二的“长板”。

与Facebook、谷歌、苹果,甚至它的“中国门徒”微博等动辄AR、云服务的能力相比,Twitter的技术创新,给人的感觉就很索然无味。

比如Twitter在2018年11月推出的“探索”选项卡,Facebook在2016年就尝试过类似的做法。

信息流算法的表现也并不好, 很多Twitter用户表示被智能算法控制的timeline变得支离破碎,在最新资讯里刷到二三小时前的内容。Twitter不得不在2018年9月,宣布重新为手机客户端用户提供了切换正常时间流的功能。

另一方面,对广告变现的过度追求,正在透支媒体平台的公信力。

作为一个广告收入占到90%以上的社交媒体,Twitter最大的矛盾就在于,用户与广告客户的利益最大化是有出入的。

比如说,为了实现更高效率的广告变现,就需要精准定位、用户画像、精准推送,不可避免地要“售卖”用户数据。在一些极端情况下,社交媒体还会暴露用户的安全信息,比如确切地址。有研究显示,带有地址信息的推文占每天总推文的 2%,也就是 440 万条。

另外,AI基础能力和人才的不足,或许会让Twitter面对更深的责难。

面对上述问题,其他在AI技术上发力较早的科技企业,就可以通过技术手段最大程度地规避数据隐患。

比如Facebook就宣布将端到端的加密服务贯穿到旗下包含的所有即时通讯工具。今年的谷歌I/O大会,也发布了一系列与隐私管理有关的新产品,比如语音助理谷歌assistant能够离线使用,无需将用户数据传输至云端处理。

而同样的境况,Twitter超3200万Twitter账户密码泄露,官方除了甩锅黑客并重置密码,似乎就再也无所作为。

内容上也同样,谷歌近年来不断更新和改进搜索引擎和算法,满足用户对高质量新闻的需求。比如,Google Search将新闻内容整合到精选摘要中,形成 “热门新闻”的轮播。

YouTube也在积极开发新闻内容,在信息流界面添加了“突发新闻”的功能板块。2018年,还投入了2500万美元扶持视频新闻。

由此可见,尽管商业模式大同小异,Twitter也做了许多方面的努力,这并不能帮助它解决未来的问题。技术地基的匮乏,将让Twitter这座社交大厦继续风雨飘摇,勿谓言之不预。

或许,在商业模式这个根本问题转变之前,AI注定只能是一个奢侈而空洞的梦。

特别声明:本文为合作媒体授权DoNews专栏转载,文章版权归原作者及原出处所有。文章系作者个人观点,不代表DoNews专栏的立场,转载请联系原作者及原出处获取授权。

扫描二维码