大嘉购无卡支付APP咨询: 微信:18833195
大嘉购(www.jinkongqianbaow.com)是广东盛迪嘉电子商户股份有限公司旗下独立电商购物及移动支付品牌,资金由持人行颁发支付牌照支付机构“盛迪嘉支付”提供结算服务!

GPT-3走红背后,AI 正变成普通人玩不起的游戏

大嘉购整理编辑:

GPT-3走红背后,AI 正变成普通人玩不起的游戏

文章经授权转自公众号:PingWest品玩(ID:wepingwest);作者: 人民数字TMT

在日常生活让 AI 帮忙完成一些任务,已经不是新鲜事。智能音箱里的 AI,可以告诉你“明天天气怎么样”;翻译软件里的 AI,能准确翻译一大段话甚至一篇文章;写作 AI 则会输出作文。

但它们都只能干一件事,翻译的 AI 写不了作文,问答的 AI 也不会翻译。它们更像一个个工具,而不是一个智能体。一个真正智能的 AI 应该是什么样的?它应该是通用的,既可以对付问答、写文章,也能搞定翻译。

最近在硅谷大火的 GPT-3,就是这么一个 AI。问答、写文、翻译都不在话下,还能写代码、算公式、做表格、画图标(详细的例子参见 PingWest 品玩之前的文章:API 开放之后,我们才真正领略 GPT-3 的强大……)。

GPT-3走红背后,AI 正变成普通人玩不起的游戏

· GPT-3 甚至会设计一个看上去像西瓜的按钮

本质上,GPT-3 其实是一个语言模型。所谓语言模型,就是让机器理解并预测人类语言的一项技术。如果说以前的语言模型是专才,那 GPT-3 就是一个通才,而且样样都干得还不错。

当我们仔细回顾和梳理它的诞生故事会发现,AI 领域的一个明显趋势正在浮出水面:要训练一个有颠覆性进步的模型,最终比拼的是数据量和算力规模,这意味着这个行业的门槛越来越高,最终可能导致 AI 技术的竞争变成少数“烧得起钱”的大公司之间的游戏。

预训练筑起数量门槛

GPT-3的故事要从2018年说起。

2018 年初,艾伦人工智能研究所和华盛顿大学的研究人员提出了 ELMo(Embedding from Language Models)模型。这之前的模型,无法理解上下文,不能根据语境去判断一个多义词的正确含义,ELMo 第一次解决了这个问题。

在训练 ELMo 模型过程中,研究人员采用了一种关键的方法——预训练。通常,训练一个模型需要大量经过人工标注的数据。而在标注数据很少的情况下,训练出来的模型精度很差。

预训练则摆脱了对标注数据的依赖,用大量没有标注的语料去训练(即无监督学习),得到一套模型参数,再把这套模型参数应用于具体任务上。这种模式训练出来的语言模型被证明了,在自然语言处理(以下简称 NLP)任务中能实现很好的效果。可以说,预训练这种方式的成功,开创了自然语言研究的新范式。

GPT-3走红背后,AI 正变成普通人玩不起的游戏

2018 年 6 月,在 ELMo 基础上,OpenAI 提出了 GPT。GPT 全称 Generative Pre-training,字面意思是“生成式预训练”。

GPT 同样基于预训练模式,但和 ELMo 不同的是,它加入了第二阶段训练:精调(Fine-tuning,又称“微调”),开创了“预训练+精调”的先河。所谓精调,即在第一阶段训练好的模型基础上,使用少量标注语料,针对具体的 NLP 任务来做调整(即有监督学习)。

除了开创“预训练+精调”模式,GPT 还在特征提取器上采用更加强大的 Transformer。所谓特征提取器,就是用来提取语义特征的。Google 在 2017 年推出的 Transformer,比 ELMo 所用的特征提取器 RNN,在综合效果和速度方面有优势。并且,数据量越大,越能凸显出 Transformer 的优点。

GPT 在预训练阶段设计了 12 层 Transformer(层数越多规模越大),并且使用“单向语言模型”作为训练任务。上文说到,ELMo 模型能理解上下文,上文和下文的信息都被充分利用。而 GPT 和之后的迭代版本,坚持用单向语言模型,只使用上文信息。

GPT 的设计思路奠定了此后迭代的基础,但由于它的规模和效果没有很出众,风头很快被 2018 年底亮相的 BERT 所盖过。

GPT-3走红背后,AI 正变成普通人玩不起的游戏

· 冷知识:ELMo 和 BERT 都是美国儿童节目《芝麻街》里面角色的名字

BERT 由 Google 打造,刷新 11 项 NLP 任务的最好水平,颠覆了整个 NLP 领域。BERT 的成功其实有 GPT 功劳,它们大框架上基本相同,都采用“预训练+精调”模式。差异的地方在于,GPT 是单向语言模型,而 BERT 采用双向语言模型。

BERT 虽然取得了巨大成功,但它有两个缺点。其一,虽然采用无监督学习和有监督学习结合(即“预训练+精调”)的模式,但还是少不了特定领域一定量的标注数据。其二,因为领域标注数据有限,会导致 BERT 模型过拟合(模型过于死板,只适用于训练数据),难以应用到其他领域,即通用能力不足。

2019 年 2 月亮相的 GPT-2,解决了 BERT 的短板。为了摆脱对标注数据的依赖,OpenAI 在设计 GPT-2 模型时,基本上采用无监督学习(即预训练),减小了精调阶段有监督学习的比重,尝试在一些任务上不进行精调。

其次,为了增强通用性,OpenAI 选取了范围更广、质量更高的数据,用 800 万个互联网网页的语料(大小 40 GB)去训练,几乎覆盖所有领域。此外,OpenAI 还加大了 GPT-2 模型的规模,把参数增加到 15 亿,是 GPT(1.17 亿个参数)的 10 倍,是 BERT-Large(BERT 一个规模较大的版本,有 3 亿个参数)的 5 倍。

GPT-2 亮相后,很快吸引了整个 NLP 领域的目光。它在做具体 NLP 任务时(如问答、翻译和摘要),用的都是预训练阶段的模型,都能比较好的完成这些任务。特别是给定短文续写文章方面,表现十分出色。

沿着大规模预训练的思路,OpenAI 继续“大水漫灌”,用更多无标注数据、更多参数和更多算力去训练模型,终于在 2020 年 5 月推出了 GPT-3。7 月,又开发了 API(应用程序接口),让更多开发者可以调用 GPT-3 的预训练模型,彻底引爆了整个 NLP 圈。

GPT-3走红背后,AI 正变成普通人玩不起的游戏

· GPT-3 在右边最上面,图片来自微信号“亲爱的数据”

堆人、堆算力规模

从 GPT-1 的“平平无奇”到 GPT-3 的突破,充分体现了什么叫“大力出奇迹”。

首先看人力。初代 GPT 的论文只有四位作者,GPT-2 论文有六位作者。到了 GPT-3,论文作者猛增为 31 位。

GPT-3走红背后,AI 正变成普通人玩不起的游戏

· GPT-3 的论文足有 31 位作者

并且,这 31 位作者分工明确,有人负责训练模型,有人负责收集和过滤数据,有人负责实施具体的自然语言任务,有人负责开发更快的 GPU 内核,跟公司不同部门间合作没啥区别。

GPT-3走红背后,AI 正变成普通人玩不起的游戏

· 31 位作者的分工就写了整整一页

再看看算力。从初代 GPT 到 GPT-3,算法模型基本没有变化,都是基于 Transformer 做预训练,但训练数据量和模型规模十倍、千倍地增长。相应地,所需要的算力也越来越夸张。初代 GPT 在 8 个 GPU 上训练一个月就行,而 GPT-2 需要在 256 个 Google Cloud TPU v3 上训练(256 美元每小时),训练时长未知。

GPT-3走红背后,AI 正变成普通人玩不起的游戏

到 GPT-3,算力费用已经是千万级别。据 GPT-3 的论文,所有模型都是在高带宽集群中的英伟达 V100 GPU 上训练的,训练费用预估为 1200 万美元。

甚至,由于成本过于地高,研究者在发现了一个 Bug 的情况下,没有选择再去训练一次,而是把涉及的部分排除在论文之外。

GPT-3走红背后,AI 正变成普通人玩不起的游戏

· 研究人员发现了一个 Bug,但由于成本问题没有去解决

显然,没有强大的算力(其实相当于财力)支持,GPT-3 根本不可能被训练出来。那么,OpenAI 的算力支持源自何处?这要说回到一笔投资。2019 年 7 月,微软向 OpenAI 注资 10 亿美元。双方协定,微软给 OpenAI 提供算力支持,而 OpenAI 则将部分 AI 知识产权授权给微软进行商业化。

GPT-3走红背后,AI 正变成普通人玩不起的游戏

2020 年 5 月,微软推出了一台专门为 OpenAI 设计的超级计算机。它托管在 Azure 上,包含超过 28.5 万个处理器内核和 1 万块 GPU,每个显卡服务器的连接速度为 400 Gbps/s。它的性能在超级计算机排名中,可以排到前五。

最后,再来说说 OpenAI 这家机构。埃隆・马斯克和原 Y Combinator 总裁山姆·奥特曼主导成立于 2015 年的 OpenAI,原本是一个纯粹的非营利 AI 研究组织,但经过一次转型和架构调整,加上引入微软投资,现在已经成为混合了营利与非营利性质的企业。

一直以来,OpenAI 的目标都是创建“通用人工智能”(Artificial General Intelligence,简称AGI),就好像文章开头所说的,AGI 是一个可以胜任所有智力任务的 AI。

打造 AGI 的路径有两种,一种是开发出更加强大的算法,另一种是在现有算法基础上进行规模化。OpenAI 就是第二种路径的信仰者。2019 年,OpenAI 核算了自 2012 年来所有模型所用的计算量,包括 AlexNet 和 AlphaGo,发现最大规模 AI 模型所需算力,已经增长了 30 万倍,每 3.4 个月翻一番。而摩尔定律指出,芯片性能翻倍周期是 18–24 个月。这就意味着,最大规模 AI 模型对算力需求的增长,远超芯片性能的提升。

毫无疑问,算力已经成为 NLP 研究甚至 AI 研究的壁垒。知乎用户“李渔”说得好:GPT-3 仅仅只是一个开始,随着这类工作的常态化开展,类似 OpenAI 的机构很可能形成系统性的 AI 技术垄断。

大嘉购是北京海科融通支付推出的一款电签版POS机,拥有人行颁发的支付牌照,绝对一清,不跳码,支持刷卡、插卡、挥卡,NFC触碰等多种使用方式。

扫一扫添加客服微信
立即办理大嘉购

大嘉购微信二维码

扫描二维码