大嘉购无卡支付APP咨询: 微信:18833195
大嘉购(www.jinkongqianbaow.com)是广东盛迪嘉电子商户股份有限公司旗下独立电商购物及移动支付品牌,资金由持人行颁发支付牌照支付机构“盛迪嘉支付”提供结算服务!

语音助手鏖战“全双工”,车载会是一个好场景吗?

大嘉购官网整理编辑:

本文经授权转自公众号:科技向令说(xiangling0815),作者:曾响铃

一方面,作为最接近自然交互的形式,全双工已经成为智能语音领域的“香饽饽”,各大AI语音巨头都在积极布局。

另一方面,车载场景的人机交互需求也越来越强烈,在手没有被完全解放的情况下,驾驶员们对更自由、更随性、更解放的语音交互有着更强烈的需求,全双工为应用“刚需”。

与普通生活场景不同,车载环境的用户手动操作更加不便捷,而同时又往往有诸多功能操作(例如关窗、开空调)、生活服务(例如导航)、娱乐消遣需求(例如听歌),多样化需求更需要更连续的对话体验——如果每一个指令都要唤醒口令,不但用户体验不佳,从旁观者看,这种交互方式也颇有些尴尬。

与此同时,有限空间里的司乘对话,多人对话与人机交互叠加,加上驾驶环境的嘈杂,无疑对智能语音提出了更严峻的挑战。

于是,迫切的用户需求加上庞大的商业价值空间,以及车企这些年对产品创新的渴求,在这场全双工的鏖战中,车载语音场景不出预料成了玩家竞逐的焦点,全双工+车载的“搭配”迎来广阔的市场机会。例如,不久前的重庆智博会上,腾讯云小微就联合腾讯车联展示全双工语音交互技术,让用户对车载语音助手有了更多的好感和期待。

巨头鏖战全双工,也推动“第三空间”竞逐走向台前

目前为止,车载+全双工落地应用仍处于初期阶段,技术研发与应用适配同步进行中。

1、车载全双工,巨头各有玩法姿势

微软在2018年3月底宣布“全双工语音交互感官”已完成产品化落地,“长程语音交互成为可能”,到2019年8月,又宣布全双工语言交互技术已经通过车载设备完成测试,已经有了几个测试合作汽车厂。

语音助手鏖战“全双工”,车载会是一个好场景吗?

微软的全双工语音及其车载应用是小冰项目的延续,第七代微软小冰的重心之一是实现车载商用,逐步由“玩具”转向现实价值,车载无疑是当下最恰当的选择。

而百度在押宝AI战略的大方向下,全双工技术的推广十分积极。今年7月,小度助手升级的全双工语音已经在小度在家智能音箱产品上使用,且开放赋能给更多智能硬件终端。

入局语音交互领域较早的科大讯飞,在2019年5月底发布了智能物联网操作系统iFLYOS 2.0,也在多个领域开始了全双工交互技术的应用尝试。

今年8月,重庆智博会上,腾讯云小微全双工语音技术也正式对外展示。依靠腾讯云小微这些年在语音技术上的深耕,选择了最为“刚需”的车载场景率先落地全双工交互技术,试图从最符合用户需求的驾驶场景打头阵,然后进行全域拓展。

车联网与AI助手的结合,也是技术与生态基础上的B+C的搭配,非常符合腾讯在ToB转向过程中的一贯调性。

2、技术推动下,第三空间正由概念走向实践

在很久之前,汽车就被认为是家庭、工作之外的“第三空间”,在欧美等汽车文化浓郁的国家,车的第三空间价值十分明显。

但在中国,日常出行的属性仍然占据大头,用户进入车内,听音乐、导航、调空调……在不用重复唤醒的情况下,很自然完成一套操作……把全双工放到车载场景中,如果从汽车角度看,本质上是“第三空间”的一种强化。

抛开技术,从具体场景实践来看,巨头们在全双工领域的布局和竞争,也在推动“第三空间”竞逐走向台前,谁能让用户真正体会到车上服务的便利,挖掘这个空间的用户价值,谁就能在车载场景中实现商业突围,这本身也与汽车厂商求新、求变、谋求市场增量的需求相吻合。

第三空间的体验塑造,将面对用户痛点的“三重区分”的挑战

离开汽车视角,从全双工技术视角来看,其面临的首要挑战在于,如何在连续对话中还能拥有很高准确率和响应速度。

例如,从已有资料看,腾讯云小微的全双工语音交互技术,在30秒到90秒的时间范围内(用户自行设定),一次唤醒即可实现连续对话,过程中用户可以随时打断机器的回答。

语音助手鏖战“全双工”,车载会是一个好场景吗?

而除了全双工的特殊能力,腾讯云小微可实现车载复杂噪声环境下唤醒率97%以上,语音识别准确率96%以上,意图理解准确率高达98%。

这里不去对比这些数字的优劣,毕竟多数语音助手都能拿出还不错的成绩,但它们至少说明 “全双工”交互下,准确率仍能保持高水准。不过,在汽车有限的第三空间里塑造用户体验,语音助手们还有三大硬骨头要啃——实现用户的三种“区分”需求。

1、在几何级技术难度升级的基础上,区分“情境”

腾讯云小微称包括播放音乐、导航、查股票、查天气等众多服务在内,用户都可以通过语音指令,跟车机一次唤醒、连续应答、自然交互,这其中涉及一个很重要的问题:跨情境的全双工服务。

目前的车载语音助手已经可以做到在一定场景内免唤醒,例如常用的听音乐,想听A歌曲又反悔,想听B歌曲,机器自动识别不需要用户多次唤醒。

而当场景需求延展后,全双工语音技术就不得不面临既要连续、又要跨情境“思考”的挑战,而这又几乎是汽车体验的必须,内容、导航、查询、设备控制……区分场景是“全双工”的必要技能。

很明显,即便是人的沟通在转换话题时也需要适应,机器在面临这种情境跨越的全双工语音时,其难度是乘法级的几何提升,而非仅仅做叠加而已。

2、在复杂的对话环境中,区分“人”

与欧美不同,在当下中国汽车文化中,家庭单位属于仍然强于个人单位,“每家都有车”而不是“每人都有车”。很多时候,车中不只有司机,而肯定有副驾驶等其他乘客。

所谓“第三空间”不只是为司机服务,也为所有乘客服务。

对车载全双工而言,这又带来一个特殊的问题,如何让不同的人有属于自己的完整体验。如果把全双工比作一个人,与之沟通时,司机或乘客肯定都希望他与自己的沟通是完整的。

从当前的解决方式来看,行业主要采用多音区设置:主驾唤醒之后,都是听主驾的声音,副驾的唤醒后,都是听副驾的语音,理论上,另一个人要接入全双工交互,必须重新唤醒,才可以开启自己的完整对话体验。严格来说,这是通过物理设置的替代性方案,并非机器对不同声音的完全识别,而是通过声音的来源区分“人”。行业内也正在发展的“声纹识别技术”,直接辨别不同的用户,或才是未来更为彻底的解决方案,不过这仍需要等待。

3、在丰富多样的服务中,区分“需求”

智能语音从一开始就是两条腿走路:前端听懂用户说了什么,后端根据用户的个性化需求推荐给不同的内容、服务,或者执行某些操控指令。

放到车载全双工这里,其实问题拓展到了两个层面:

怎么听懂是对机器说的,而不是对其他人说的(比如人和人聊天),不要误解用户的需求;

在确定是对机器的需求后,如何实现更为个性化的服务输出,毕竟,如果用户想吃点喜欢吃的,你随便导航到了一个用户不喜欢的店子,或者甚至用户想要去放松一下,你给导航到了公司,这样的连续交互也就失去了意义。

前者需要语音识别能力的极大加强,它还有许多细节需要用技术实现,例如腾讯云小微称其借助云端大脑,不但能理解用户的话哪些是需要响应的指令,哪些只是用户对别人说的话,这其中同样涉及复杂场景需求问题,懂更多还要区分是不是需求,挑战进一步升级。

后者,本质上可以视为个性化推荐机制的延续,考验的语音助手背后的平台数据能力,如何在尽可能短的时间内了解眼前的用户,为其提供定制化服务,强化全双工的“实质”支撑,而不是只有花架子。腾讯云小微打出“懂你所需”的旗号,通过训练后推送定制化服务内容,这是全双工技术的行业必然,只是看谁能更为准确。

对用户而言,同样是自然的交互,如同与人交流一样,与一个“懂你所需”的全双工语音助手交互,就像是熟人聊天,而与无法实现定制化服务输出的机器交互,就像是在和陌生人聊天,其体验差距无需多言。

语音助手鏖战“全双工”,车载会是一个好场景吗?

全双工语音助手趋势不可避免,车载只是拼图的一块

几乎不会有人否认,语音助手是人机交互必然趋势。经过几年的发展,在巨头们的努力下,越来越高的语音识别准确率,各平台飚出的准确率指标,本身就证明机器的“听见”和“听懂”已经逐步实现,剩下的是不断完善的过程。

而“智商”问题一旦接近解决,“情商”问题就走向台前,让机器更贴近人,实现人性化、情感化,是语音助手必然的趋势。

于是,全双工等新技术不断涌现。几乎可以肯定的是,在未来,一方面全双工必然要突破参数瓶颈,例如没有30秒、90秒的区分,而是无限连续同时准确识别需求,就是如科幻片机器人管家那样的无缝交互,这是语音助手发展的必然;另一方面,更多其他的科技将不断涌现,例如多模态识别,将声音、图像、环境等诸多因素整合来与用户自然交互。

而显然,虽然车载急迫需要全双工等更多自然交互技术,但全双工并不只会局限于车载。几乎所有巨头的全双工技术的“理想”都是全场景应用,即便是腾讯云小微选择以车载为典型,未来也必将在全领域发力——到目前为止,在出行领域之外,腾讯云小微凭借全栈AI能力及腾讯丰富的内容和服务生态,在文旅、政务、教育、智能硬件等多个领域都有涉猎。

以硬件为例,腾讯云小微AI应用解决方案已经输送到机器人、智能电视、智能音箱、智能空调等多个品牌多款产品中,而且百度、科大讯飞、阿里等玩家都在积极布局。

可以说,车载是全双工最热的局部战场,未来的全双工将是全领域的战争,届时,当物联网真正全面落地时,汽车这样的第三空间将融入一个相互连接、不分彼此的“唯一空间”,车载全双工与家居、工作全双工联动,人与虚拟数字世界将实现无缝对接。

拭目以待吧。

特别声明:本文为合作媒体授权DoNews专栏转载,文章版权归原作者及原出处所有。文章系作者个人观点,不代表DoNews专栏的立场,转载请联系原作者及原出处获取授权。(有任何疑问都请联系idonews@donews.com)

扫描二维码